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Abstract

Annular plates are used in many engineering structures. In many cases variable thickness is used in order to save weight

and improve structural characteristics. In recent years functionally graded materials (FGM) are used in many engineering

applications. A FGM plate is an inhomogeneous composite made of two constituents (usually ceramic and metal), with

both the composition and the material properties varying smoothly through the thickness of the plate. An optimal

distribution of material properties may be obtained. The plate vibrations will have a strong bending–stretching coupling

effect. The equations of motion including the effect of shear deformations using the first-order shear deformation theory

are derived and solved exactly for various combinations of boundary conditions. The solution is obtained by using the

exact element method. Exact vibration frequencies and modes are given for several examples for the first time.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of free transverse vibrations of isotropic annular plates is a well-known problem in structural
dynamics. The comprehensive work of Leissa [1] covers fully the accumulated knowledge through the 1960s
and the additional papers by the same author contain the updated work until the mid-1980s [2–7]. An
extensive literature review of circular and annular plate vibrations dating back to the beginning of the 20th
century was presented by Weisensel [8]. Irie et al. [9] presented exact solutions for the vibration frequencies of
thick annular plates using Bessel functions. So and Leissa [10] used the Ritz method for three-dimensional
(3D) vibration analysis of thick circular and annular plates. Liew and Yang [11] obtained elasticity solutions
using orthogonally generated polynomial functions in the Ritz method. Liu and Lee [12] presented results
from finite-element analysis for thick plates. Zhou et al. [13] used the Chebyshev–Ritz method to solve the
problem. Duan et al. [14] gave exact solutions for thick annular plates vibrations.

The topic of variable thickness plates has recently been addressed by several methods. Many researches have
used various formulations of the Ritz method to solve the problem approximately [15–18]. Shahab [19] and
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Salmane and Lakis [20] presented finite-element solutions for nonuniform circular and annular plates. Shahab
[19] also compared his solutions to experimental values obtained by using time-average holographic technique.
Kang and Leissa [21] and Kang [22] used Ritz method for 3D analyses for linearly and nonlinearly thickness
variation of annular plates, respectively. Eisenberger and Jabareen [23] presented exact solution for axi-
symmetric vibrations of circular and annular plates with general polynomial variation of thickness. The
differential quadrature method was utilized by Wang et al. [24], Laura et al. [25], and Wu and Liu [26], for
approximate solution of circular and annular variable thickness plate vibrations. Duan et al. [27] used
generalized hypergeometric function solutions for solving the problem and also presented comparison with
finite-element model of variable thickness annular plate.

Functionally graded materials (FGM) were first introduced by material scientists in Japan in 1984 [28].
FGM are made by combining two different materials in such a way that their properties vary smoothly
through the thickness of the plate. The use of FGM has many advantages in thermal environments and
variation in their thickness can be utilized to reduce weight and achieve better vibrational behavior.

Reddy et al. [29] addressed the axisymmetric bending of functionally graded circular and annular plates.
They solved only the static problem, and used a constant Poisson ratio through the thickness of the plate.
They addressed only plates with constant thickness. In this paper, the vibration analysis of thick annular
plates with variable thickness made of isotropic material and FGM are presented. The equations of motion are
derived using a first-order shear deformation theory. The resulting equations of motion are highly coupled
ordinary differential equations. For the variable thickness annular plate problem the equations have variable
coefficients. The exact element method [30] is used to derive the exact frequency-dependent stiffness matrix for
the plate. Then the natural frequencies are found as the values of the frequency that cause the dynamic
stiffness matrix of the structure to become singular, and one can find as many frequencies as needed for design.
Given the frequencies the exact modes of vibrations are found. Examples are given for the accuracy of the
method and present the complex mode shapes of vibrations. The results for FGM plates are presented for the
first time.
2. Basic equations

The five equation of motion for free vibration of the thick circular plate (Fig. 1) are obtained from the
equations of motion of general shells [31], by substituting radiuses of curvature Rs ¼N and Ry ¼N and
Lame parameters A ¼ 0 and B ¼ s, as

Nsðs; yÞ þ s
qNsðs; yÞ

qs
þ

qNysðs; yÞ
qy

�Nyðs; yÞ þ sqs ¼ 0, (1a)
Rp(s)

Rin

z

u

v

w

L

h(s)

�s
��

�

�

s

Fig. 1. Geometry, coordinate system and displacements of the annular circular plates with variation of thickness in the meridian direction.
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qNyðs; yÞ
qy

þNsyðs; yÞ þ s
qNsyðs; yÞ

qs
þNysðs; yÞ þ sqy ¼ 0, (1b)

Qsðs; yÞ þ s
qQsðs; yÞ

qs
þ

qQyðs; yÞ
qy

þ sqz ¼ 0, (1c)

Msðs; yÞ þ s
qMsðs; yÞ

qs
þ

qMysðs; yÞ
qy

�Myðs; yÞ � sQsðs; yÞ þ sms ¼ 0, (1d)

qMyðs; yÞ
qy

þMsyðs; yÞ þ s
qMsyðs; yÞ

qs
þMysðs; yÞ � sQyðs; yÞ þ smy ¼ 0, (1e)

where the inertial forces and the rotary inertia moments are

qs ¼ �I1ðsÞ
q2Uðs; y; tÞ

qt2
� I2ðsÞ

q2Csðs; y; tÞ
qt2

, (2a)

qy ¼ �I1ðsÞ
q2V ðs; y; tÞ

qt2
� I2ðsÞ

q2Cyðs; y; tÞ
qt2

, (2b)

qz ¼ �I1ðsÞ
q2W ðs; y; tÞ

qt2
, (2c)

ms ¼ �I2ðsÞ
q2Uðs; y; tÞ

qt2
� I3ðsÞ

q2Csðs; y; tÞ
qt2

, (2d)

my ¼ �I2ðsÞ
q2V ðs; y; tÞ

qt2
� I3ðsÞ

q2Cyðs; y; tÞ
qt2

. (2e)

For FGM materials

I1ðsÞ ¼

Z hðsÞ=2

�hðsÞ=2
rðzÞdz; I2ðsÞ ¼

Z hðsÞ=2

�hðsÞ=2
rðzÞzdz; I3ðsÞ ¼

Z hðsÞ=2

�hðsÞ=2
rðzÞz2 dz. (3)

The force and moment resultants per unit length are obtained by integrating the stresses over the thickness
of the plate as

Ns s; yð Þ

Ny s; yð Þ

Nsy s; yð Þ

Nys s; yð Þ

2
66664

3
77775 ¼

Z hðsÞ=2

�hðsÞ=2

ss

sy
ssy

sys

2
6664

3
7775dz;

Ms s; yð Þ

My s; yð Þ

Msy s; yð Þ

Mys s; yð Þ

2
66664

3
77775 ¼

Z hðsÞ=2

�hðsÞ=2

ss

sy
ssy

sys

2
6664

3
7775zdz;

Qs s; yð Þ

Qy s; yð Þ

" #
¼

Z hðsÞ=2

�hðsÞ=2

ssz

syz

" #
dz. (4)

The strain-displacement equations of the first-order shear deformation theory of thick circular plates
are obtained by satisfying the Kirchoff–Love hypothesis, such that normal to the plate mid-surface
during deformation remain straight, and suffer no extension, but are not necessarily normal to the mid-surface
after deformation. According to these assumptions the displacement of every point of the plate may be
expressed as

Uðs; y; z; tÞ ¼ U0ðs; y; tÞ þ zCsðs; y; tÞ,

V ðs; y; z; tÞ ¼ V 0ðs; y; tÞ þ zCyðs; y; tÞ,

W ðs; y; z; tÞ ¼W 0ðs; y; tÞ ð5Þ
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and the strains

�s ¼ �os þ zks,

�y ¼ �oy þ zky,

gsy ¼ gosy þ ztsy þ goys þ ztys,

gsz ¼ gosz,

gyz ¼ goyz, ð6Þ

where

�os ¼
q
qs

U0ðs; y; tÞ; �oy ¼
1

s

q
qy

V 0ðs; y; tÞ þ
U0ðs; y; tÞ

s
;

ks ¼
q
qs
Csðs; y; tÞ; ky ¼

1

s

q
qy

Cyðs; y; tÞ þ
Csðs; y; tÞ

s
;

gosy ¼
q
qs

V0ðs; y; tÞ; goys ¼
1

s

q
qy

U0ðs; y; tÞ �
V0ðs; y; tÞ

s
;

gosz ¼
q
qs

W 0ðs; y; tÞ þCsðs; y; tÞ; goyz ¼
1

s

q
qy

W 0ðs; y; tÞ þCyðs; y; tÞ;

tsy ¼
q
qs
Cyðs; y; tÞ; tys ¼

1

s

q
qy

Csðs; y; tÞ �
Cyðs; y; tÞ

s
;

3
7777777777777775

(7)

are the strains and curvatures of the middle surface of the plate. For orthotropic materials the force and
moment resultants obtained by integrating the stresses through the plate thickness, and for plates with
variable thickness the constitutive relations become:

Ns s; yð Þ

Ny s; yð Þ

Nsy s; yð Þ

Nys s; yð Þ

Ms s; yð Þ

My s; yð Þ

Msy s; yð Þ

Mys s; yð Þ

Qs s; yð Þ

Qy s; yð Þ

2
666666666666666666666664

3
777777777777777777777775

¼

A11ðsÞ A12ðsÞ 0 0 B11ðsÞ B12ðsÞ 0 0 0 0

A12ðsÞ A22ðsÞ 0 0 B12ðsÞ B22ðsÞ 0 0 0 0

0 0 A66ðsÞ A66ðsÞ 0 0 B66ðsÞ B66ðsÞ 0 0

0 0 A66ðsÞ A66ðsÞ 0 0 B66ðsÞ B66ðsÞ 0 0

B11ðsÞ B12ðsÞ 0 0 D11ðsÞ D12ðsÞ 0 0 0 0

B11ðsÞ B22ðsÞ 0 0 D12ðsÞ D22ðsÞ 0 0 0 0

0 0 B66ðsÞ B66ðsÞ 0 0 D66ðsÞ D66ðsÞ 0 0

0 0 B66ðsÞ B66ðsÞ 0 0 D66ðsÞ D66ðsÞ 0 0

0 0 0 0 0 0 0 0 A55ðsÞ 0

0 0 0 0 0 0 0 0 0 A44ðsÞ

2
666666666666666666666664

3
777777777777777777777775

�os

�oy

gosy

goys

ks

ky

tsy

tys

gosz

goys

2
666666666666666666666664

3
777777777777777777777775

ð8Þ
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and the stiffness coefficients Aij(s), Bij(s), Dij(s) for plates made from functionally graded material are as
follows:

AijðsÞ ¼

Z hðsÞ=2

�hðsÞ=2
QijðzÞdz;

BijðsÞ ¼

Z hðsÞ=2

�hðsÞ=2
QijðzÞzdz;

DijðsÞ ¼

Z hðsÞ=2

�hðsÞ=2
QijðzÞz

2 dz;

9>>>>>>>>>=
>>>>>>>>>;

i; j ¼ 1; 2; 6ð Þ;

Q11ðzÞ ¼ Q̄22ðzÞ ¼
EðzÞ

1� mðzÞ2
;

Q̄12ðzÞ ¼ mðzÞ
EðzÞ

1� mðzÞ2
;

Q̄44ðzÞ ¼ Q̄55ðzÞ ¼
EðzÞ

2 1þ mðzÞð Þ
;

AiiðsÞ ¼ k
Z hðsÞ=2

�hðsÞ=2
QijðzÞdz i ¼ 4; 5ð Þ; Q̄66ðzÞ ¼

EðzÞ

2 1þ mðzÞð Þ
:

(9)

Herein k is the shear correction factor, and for FGM due to the variation of Poisson ratio through the
thickness, is considered as

k ¼
5

6� m1V1 þ m2V2

� � , (10)

where V1 and V2 denotes the volume fraction of each material in the entire cross-section.
For FGM with two constituent materials the variations through the thickness of Young’s modulus E,

Poisson ratio m, and the mass density r, can be expressed as

E z̄ð Þ ¼ ðE1 � E2ÞVf z̄ð Þ þ E2,

r z̄ð Þ ¼ ðr1 � r2ÞVf z̄ð Þ þ r2,

m z̄ð Þ ¼ ðm1 � m2ÞVf z̄ð Þ þ m2, ð11Þ

where Vf is volume fraction of the top material, and it is assumed to follow a power-law distribution as

V f z̄ð Þ ¼ z̄þ
1

2

� �g

, (12)

where �1=2pz̄p1=2 is nondimensional coordinate through the thickness from the middle surface topward,
and g is a gradient index.

For free harmonic vibrations of axisymmetric plates the displacement functions has been assumed as

U0ðs; y; tÞ ¼ uðsÞ cos ny sin ot,

V 0ðs; y; tÞ ¼ vðsÞ sin ny sin ot,

W 0ðs; y; tÞ ¼ wðsÞ cos ny sin ot,

Csðs; y; tÞ ¼ csðsÞ cos ny sin ot,

Cyðs; y; tÞ ¼ cyðsÞ sin ny sin ot. ð13Þ

Substituting the displacement functions (13) and strain displacement relations (7) into Eqs. (8) and (1), and
introducing the nondimensional meridian coordinate 0pxp1

s ¼ Rp xð Þ ¼ Rin þ xL, (14)

q
qs
ð�Þ ¼

1

L

q
qx
ð�Þ (15)
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yields the five differential equations of the motion for thick annular plates in terms of nondimensional
coordinate x, for any value of the circumferential wave number n

R2
pI2cs þ R2

pI1u
� �

o2 þ A11f 2u00 þ fA011 þ A11

� �
fu0 þ fA012 � A22 � A66n2

� �
u

þ A12 þ A66ð Þnf v0 þ fA012 � A22 � A66

� �
nvþ B11f 2c00s þ fB011 þ B11

� �
fc0s

þ fB012 � B22 � B66n2
� �

cs þ B12 þ B66ð Þfnc0y þ fB012 � B22 � B66

� �
ncy ¼ 0, ð16aÞ

R2
pI2ct þ R2

pI1v
� �

o2 � A12 þ A66ð Þfnu0 � fA066 þ A22 þ A66

� �
nuþ A66f 2v00

þ A66 þ fA066
� �

fv0 � fA066 þ A22n2 þ A66

� �
v� B12 þ B66ð Þfnc0s

� B22 þ B66 þ fB066
� �

ncs þ B66f 2c00y � B12 þ B66ð Þfc0y � fB066 þ B22 þ B66

� �
ncy ¼ 0, ð16bÞ

R2
pI1wo2 þ A55f 2w00 þ fA055 þ A55

� �
fw0 � A44n2w

þ RpA55fc0s þ Rp fA055 þ A55

� �
cs þ RpA44ncy ¼ 0, ð16cÞ

R2
pI3cs þ R2

pI2u
� �

o2 þ B11f 2u00 þ fB011 þ B11

� �
fu0 þ fB012 � B22 � B66n2

� �
u

þ B12 þ B66ð Þnf v0 þ fB012 � B22 � B66

� �
nv� A55Rpfw0 þD11f 2c00s þ fD011 þD11

� �
fc0s

þ fD012 �D22 �D66n2
� �

cs þ D12 þD66ð Þfnc0y þ fD012 �D22 �D66

� �
ncy ¼ 0, ð16dÞ

Rð 2
pI3ct þ R2

pI2vÞo2 � B12 þ B66ð Þfnu0 � fB066 þ B22 þ B66

� �
nu

þ B66f 2v00 þ B66 þ fB066
� �

fv0 � fB066
�

þ B22n2 þ B66Þv

þ RpA44nw� D12 þD66ð Þfnc0s � D22 þD66 þ fD066
� �

ncs

þD66f 2c00y þ D66 þ fD066
� �

fc0y � fD066
�

þD22n2 þD66 þ R2
pA44Þcy ¼ 0 ð16eÞ

and force and moment resultants along the circumference of the annular plate (x ¼ const) are:

Ns ¼
A12

Rp

uþ
A11

L
u0 þ

A12n

Rp

vþ
B11

L
c0s þ

B12

Rp

cs þ
B12n

Rp

cy

� �
cos ðnyÞ sin ðotÞ, (17a)

Nsy ¼ �
A66n

Rp

uþ
A66

L
v0 �

A66

Rp

vþ
B66

L
c0y �

B66n

Rp

cs �
B66

Rp

cy

� �
sin ðnyÞ sin ðotÞ, (17b)

Qs ¼
A55

L
w0 þ A55cs

� �
sin ðnyÞ sin ðotÞ, (17c)

Ms ¼
B12

Rp

uþ
B11

L
u0 þ

B12n

Rp

vþ
D11

L
c0s þ

D12

Rp

cs þ
D12n

Rp

cy

� �
cos ðnyÞ sinðotÞ, (17d)

Msy ¼ �
B66n

Rp

uþ
B66

L
v0 �

B66

Rp

vþ
D66

L
c0y �

D66n

Rp

cs �
D66

Rp

cy

� �
sin ðnyÞ sin ðotÞ, (17e)

where (�)0 ¼ q/qx, f ¼ Rp(x)/L and all the coefficients Aij, Bij, Dij, Ik, Rp, and f are functions of the
coordinate x.
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Table 1

Comparison of frequency parameters l for constant thickness annular plates with free inner edge and various restrained outer edges (anti-

symmetric thickness modes)

h/Ro Ri/Ro Source of results Mode typesa

(0, 1) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2)

F–F 0.1 0.1 Ref. [9] 8.65 35.95 19.56 52.90 5.21 32.69

Present Ib 8.64687 35.95126 19.56464 52.89674 5.20623 32.69040

Present II 8.65048 36.02964 19.59482 53.12031 5.20915 32.76966

Ref. [11] 8.6518 36.036 19.596 53.148 5.2105 32.786

0.3 Ref. [9] 8.23 46.63 17.02 52.5 4.8 30.77

Present I 8.22690 46.63107 17.01848 52.50346 4.79545 30.76515

Present II 8.22909 46.73297 17.05920 52.68111 4.79883 30.84624

Ref. [11] 8.2291 46.730 17.063 52.693 4.7996 30.842

0.5 Ref. [9] 9.10 81.03 15.76 83.48 4.17 28.05

Present I 9.10194 81.03124 15.76240 83.47791 4.17100 28.04817

Present II 9.10352 81.29307 15.80035 83.77901 4.17424 28.14113

Ref. [11] 9.1036 81.306 15.783 83.770 4.173 28.085

0.3 0.1 Ref. [9] 7.83 26.58 15.7 34.62 4.81 24.12

Present I 7.83027 26.57574 15.69685 34.62412 4.80672 24.12241

Present II 7.85231 26.83614 15.82308 35.14107 4.81956 24.37613

Ref. [11] 7.8544 26.865 15.824 35.170 4.8172 24.403

0.3 Ref. [9] 7.42 33.18 13.16 35.42 4.38 22.52

Present I 7.41759 33.18240 13.15837 35.42176 4.38260 22.51570

Present II 7.43018 33.45551 13.28114 35.78412 4.39686 22.77802

Ref. [11] 7.4313 33.501 13.247 35.801 4.3921 22.758

0.5 Ref. [9] 7.84 51.25 11.72 51.94 3.78 19.42

Present I 7.84005 51.25196 11.72339 51.94135 3.78099 19.42135

Present II 7.84710 51.70839 11.82027 52.43428 3.79611 19.65828

Ref. [11] 7.8482 51.785 11.778 52.504 3.790 19.567

F–S 0.1 0.1 Ref. [9] 4.81 28.04 13.50 43.83 24.26 61.94

Present I 4.81410 28.03666 13.45246 43.79495 24.06992 61.79552

Present II 4.81577 28.09583 13.52093 44.00838 24.30692 62.24040

Ref. [11] 4.8181 28.104 13.524 44.016 24.316 62.271

0.3 Ref. [9] 4.63 34.92 12.19 41.45 23.07 57.18

Present I 4.62960 34.91902 12.18902 41.44929 23.06717 57.18438

Present II 4.63075 34.99520 12.21251 41.59770 23.11469 57.47651

Ref. [11] 4.6329 35.002 12.208 41.582 23.116 57.445

0.5 Ref. [9] 5.03 59.53 10.90 62.28 20.92 70.09

Present I 5.03209 59.53088 10.90009 62.28302 20.92404 70.08873

Present II 5.03296 59.73292 10.92275 62.52191 20.97814 70.43018

Ref. [11] 5.0352 59.721 10.916 62.503 20.966 70.510

0.3 0.1 Ref. [9] 4.54 21.67 11.5 30.05 19.04 39.93

Present I 4.53849 21.66535 11.50426 30.05296 19.04346 39.93500

Present II 4.55075 21.89698 11.59124 30.52570 19.24539 40.63137

Ref. [11] 4.5572 21.933 11.602 30.565 19.279 40.757

0.3 Ref. [9] 4.39 26.08 10.09 28.93 18.13 36.61

Present I 4.38556 26.07791 10.08631 28.93210 18.12655 36.60536

Present II 4.39392 26.33892 10.17374 29.29467 18.32447 37.21336

Ref. [11] 4.4007 26.387 10.162 29.307 18.340 37.184

0.5 Ref. [9] 4.72 39.22 8.94 40.24 16.11 43.25

Present I 4.72052 39.21840 8.93782 40.23733 16.11157 43.25360

Present II 4.72651 39.71663 9.00810 40.77474 16.29036 43.89833

Ref. [11] 4.7367 39.798 8.990 40.836 16.256 42.972

F–C 0.1 0.1 Ref. [9] 9.90 36.33 20.04 52.53 31.86 71.35

Present I 9.89625 36.32761 20.04205 52.53423 31.85782 71.34949

Present II 9.91025 36.47405 20.09934 52.85596 31.98383 71.85394

Ref. [11] 9.949 36.603 20.171 53.015 32.095 72.083

0.3 Ref. [9] 11.12 46.25 18.12 51.74 30.08 66.24

E. Efraim, M. Eisenberger / Journal of Sound and Vibration 299 (2007) 720–738726
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Table 1 (continued )

h/Ro Ri/Ro Source of results Mode typesa

(0, 1) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2)

Present I 11.12169 46.25268 18.12175 51.73694 30.07625 66.24395

Present II 11.13662 46.48176 18.17963 52.04177 30.19470 66.72594

Ref. [11] 11.18 46.641 18.220 52.173 30.266 66.828

0.5 Ref. [9] 17.02 77.24 20.48 79.41 29.02 85.76

Present I 17.02370 77.23862 20.48089 79.40782 29.01617 85.75651

Present II 17.05562 77.85227 20.54137 80.05568 29.13922 86.50256

Ref. [11] 17.142 78.150 20.614 80.339 29.197 86.748

0.3 0.1 Ref. [9] 8.37 24.7 15.01 32.23 22.02 41.64

Present I 8.36584 24.70209 15.01476 32.23117 22.01586 41.64170

Present II 8.44232 25.10690 15.22659 32.87114 22.37388 42.49528

Ref. [11] 8.4771 25.203 15.274 32.982 22.461 42.734

0.3 Ref. [9] 9.39 29.08 13.64 31.32 20.96 38.1

Present I 9.38881 29.07770 13.63621 31.31832 20.95777 38.10000

Present II 9.46958 29.57115 13.81758 31.88337 21.29719 38.85732

Ref. [11] 9.5132 29.701 13.835 31.978 21.348 38.905

0.5 Ref. [9] 13.55 40.9 15.42 41.71 20.21 44.29

Present I 13.54754 40.89935 15.42158 41.70892 20.21069 44.28988

Present II 13.69145 41.67399 15.61397 42.50513 20.51838 45.14628

Ref. [11] 13.773 41.952 15.669 41.952 20.540 45.355

aThe first number denotes the number of nodal diameters, whereas the second number indicates the order of the frequencies.
bI denotes the results of calculations with k ¼ p2/12 whereas II denotes the results with k ¼ 5/(6�m).

Table 2

Comparison of transverse natural frequencies (Hz) for linear variable thickness annular plates with clamped inner edge and free outer

edges with experimental results and other methods

Experiment

[19]

Present

analysis 21

DOF

Difference

from

experiment

(%)

3D FE [19]

240 DOF

Difference

from

experiment

(%)

Ritz 5-terms

[19]

Difference

from

experiment

(%)

n ¼ 0 640 641.9 0.29 654 2.19 660 3.13

— 2824.1 — 2865 — 2988 —

— 7164.5 — 7238 — 7720 —

n ¼ 1 580 581.4 0.25 591 1.90 595 2.59

— 2921.7 — 2941 — 3088 —

7338 7383.3 0.62 7416 1.06 7940 8.20

n ¼ 2 663 691.9 4.35 670 1.06 698 5.28

3311 3519.2 6.29 3457 4.41 3712 12.11

7830 8332.9 6.42 8229 5.10 8900 13.67

n ¼ 3 1152 1166.4 1.25 1111 �3.56 1238 7.47

4529 4727.8 4.39 4589 1.32 5072 11.99

9725 10159.1 4.46 9901 1.81 10850 11.57
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3. Solution

The solution is assumed to be infinite polynomials in x, in the form

uðxÞ ¼
X1
i¼1

uix
i; vðxÞ ¼

X1
i¼1

wix
i; wðxÞ ¼

X1
i¼1

wix
i; csðxÞ ¼

X1
i¼1

csix
i; cyðxÞ ¼

X1
i¼1

cyix
i. (18)
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Substitution of these proposed series solutions into the equations of motion, yields five recurrence
formulas for the terms ui+2, vi+2, wi+2, csiþ2

and cyiþ2
as in the exact element method [30]. Then following

the same procedure as in Ref. [30] the particular solutions for unit displacement in the five degrees of
freedom at each of the two edges of the annular plate (radial displacement, circumferential displacement,
transverse displacement, and the two rotations about the circumference and radius of the plate), are used to
find the dynamic stiffness terms which are the end forces and moments due to unit displacements. For each
mode shape one has the five end forces, or stiffnesses along the unit angle segment of the perimeter of the
(b) 

(d)

(a) 

(c)

hout

(f)

ξξ

(e)

Rin

Rout

hin

Fig. 2. Types of variation of the plate thickness: (a, b) linear form; (c, d) quadratically concave form; and (e, f) quadratically convex form.

Fig. 3. Vibration frequencies and mode shapes of tapered disk: (a) experimental laser holograms [19]; and (b) shapes obtained by present

study (contour plots).
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plate edges, as follows:

S1

S6

)
¼ Ns ¼ A12uþ fA11u0 þ A12nvþ fB11c

0
s þ B12cs þ B12ncy

	 
 x ¼ 0;

x ¼ 1;

����� (19a)

S2

S7

)
¼ Ny ¼ �A66nuþ fA66v0 � A66vþ fB66c

0
y � B66ncs � B66cy

	 
 x ¼ 0;

x ¼ 1;

����� (19b)

S3

S8

)
¼ Qs ¼ fA55w0 þ RpA55cs

	 
 x ¼ 0;

x ¼ 1;

����� (19c)

S4

S9

)
¼Ms ¼ B12uþ fB11u0 þ B12nvþ fD11c

0
s þD12cs þD12ncy

	 
 x ¼ 0;

x ¼ 1;

����� (19d)

S5

S10

)
¼Msy ¼ �B66nuþ fB66v0 � B66vþ fD66c

0
y �D66ncs �D66cy

	 
 x ¼ 0;

x ¼ 1:

����� (19e)
Table 3

Comparison of transverse natural frequencies (Hz) for linear increasing variable thickness annular plates (h(s) ¼ s/15) with clamped inner

and free outer edges with 3D finite-element solution and generalized hypergeometric function [27]

C–C F–C

3D-FEM Present % Duan et al. [27] % 3D-FEM Present % Duan et al. [27] %

n ¼ 0 1 223.46 220.475 �1.34 223.772 0.14 149.25 148.882 �0.25 149.603 0.24

2 580.01 571.054 �1.54 582.352 0.40 382.44 381.146 �0.34 385.354 0.76

3 1097.6 1077.93 �1.79 1114.61 1.55 750.72 747.171 �0.47 762.903 1.62

n ¼ 1 1 258.17 255.616 �0.99 258.972 0.31 218.33 217.765 �0.26 219.379 0.48

2 618.09 609.675 �1.36 622.285 0.68 468.7 467.029 �0.36 473.471 1.02

3 1136.6 1117.65 �1.67 1156.68 1.77 833.16 829.009 �0.50 848.42 1.83

n ¼ 2 1 363.45 361.552 �0.52 366.295 0.78 352.45 351.432 �0.29 355.647 0.91

2 737.36 730.307 �0.96 747.363 1.36 665.41 663.004 �0.36 675.195 1.47

3 1257.9 1240.89 �1.35 1287.40 2.35 1055.9 1050.64 �0.50 1079.5 2.24

Table 4

Comparison of transverse natural frequencies (Hz) for nonlinear increasing variable thickness annular plates (h(s) ¼ 1/15Os) with clamped

inner and free outer edges with 3D finite-element solution and generalized hypergeometric function [27]

C–C F–C

3D-FEM Present % Duan et al. [27] % 3D-FEM Present % Duan et al. [27] %

n ¼ 0 1 302.12 300.045 �0.69 306.027 1.29 153.21 152.791 �0.27 153.859 0.42

2 821.29 814.109 �0.87 849.045 3.38 491.62 489.749 �0.38 499.91 1.69

3 1573.40 1555.934 �1.11 1669.238 6.09 1044.4 1038.440 �0.57 1081.78 3.58

n ¼ 1 1 336.99 334.891 �0.62 342.054 1.50 273.71 272.897 �0.30 276.75 1.11

2 869.35 862.050 �0.84 900.462 3.58 670.37 667.603 �0.41 688.64 2.73

3 1626.60 1608.944 �1.09 1728.966 6.29 1229 1221.551 �0.61 1286.28 4.66

n ¼ 2 1 459.55 457.348 �0.48 468.545 1.96 444.78 443.130 �0.37 452.562 1.75

2 1027.20 1019.540 �0.75 1069.060 4.08 956.33 951.464 �0.51 989.164 3.43

3 1797.40 1779.010 �1.02 1919.878 6.81 1610.1 1599.240 �0.67 1699.11 5.53
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The natural frequencies of vibrations are found as the values of o that cause the stiffness matrix of the plate,
taking into account the external restraints, to become singular. Then, a simple search method is used to
converge on all the natural frequencies, for any value of n.
Table 6

Properties of FGM components at temperature T ¼ 300K

Material Properties

Young’s modulus, E (N/m2) Poisson ratio, m Density, r (kg/m3)

Stainless steel SUS304 207,787,700,000 0.317756 8166

Silicon nitride Si3N4 322,271,500,000 0.24 2370

Table 7

Natural frequencies O ¼ oRout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rst=Est

p
of free-free FGM (Si3N4-SUS304) annular disc with variable thickness (g ¼ 1, Rin/Rout ¼ 0.2,

H/Rout ¼ 0.1)

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

Linear thickness variation (a-type)

1 L 0.3781 0.8226 0.2262 0.5030 0.8350 1.2270

2 L 1.6616 2.1471 1.3619 1.9994 2.6810 3.3953

3 E 2.7545 2.4714 1.7404 3.2471 4.2991 5.2060

4 L 3.7599 4.0963 3.0348 3.9505 4.8827 5.8097

5 T 4.5057 5.6528 3.5822 5.0684 6.5389 7.9390

6 L 6.4377 6.1851 5.0241 6.1601 7.2931 8.3885

7 E 6.9732 6.6753 5.8813 6.9926 8.7042 10.1745

8 T 7.6842 9.1435 7.3794 8.4992 9.7723 11.0173

9 L 9.4749 9.6389 7.6564 9.3313 10.8054 12.3442

10 T 10.9377 10.7744 9.8853 10.4166 11.6822 13.4351

Parabolic thickness variation (convex f-type)

1 L 0.4048 0.8865 0.2433 0.5452 0.9020 1.3171

2 L 1.8058 2.2888 1.4711 2.1461 2.8666 3.6183

3 E 2.7470 2.4890 1.7301 3.2533 4.3299 5.2543

4 L 4.0122 4.3410 3.2167 4.1783 5.1509 6.1158

5 T 4.5647 5.7285 3.6047 5.0867 6.5579 7.9601

6 L 6.7654 6.2333 5.2646 6.4323 7.6052 8.7354

7 E 7.0655 7.0064 5.9679 7.0469 8.7162 10.1698

8 T 7.7296 9.1835 7.6803 8.8084 10.1030 11.3803

9 L 9.8682 10.0288 7.7018 9.3664 10.8421 12.3668

10 T 10.9703 10.8176 9.9250 10.4509 11.7120 13.4536

Parabolic thickness variation (concave c-type)

1 L 0.3647 0.7898 0.2177 0.4822 0.8019 1.1824

2 L 1.5896 2.0755 1.3066 1.9251 2.5863 3.2806

3 E 2.7583 2.4618 1.7457 3.2427 4.2811 5.1783

4 L 3.6302 3.9706 2.9404 3.8318 4.7424 5.6485

5 T 4.4733 5.6095 3.5701 5.0588 6.5289 7.9270

6 L 6.2630 6.1608 4.8991 6.0161 7.1271 8.2039

7 E 6.9260 6.5021 5.8342 6.9632 8.6983 10.1782

8 T 7.6609 9.1217 7.2132 8.3351 9.5944 10.8208

9 L 9.2650 9.4315 7.6410 9.3129 10.7863 12.3326

10 T 10.9212 10.7529 9.8517 10.3994 11.6672 13.4201

E—Extensional mode of vibration with dominant radial oscillations.

L—Vibration mode with dominant lateral oscillations.

T—Torsional mode of vibration.
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4. Examples

For verification of the present formulation, a comparison study of the results for thick annular plates with
constant thickness, and F–F, S–F, and C–F boundary conditions, is made with the results from Mindlin
theory given by Irie et al. [9], and with the 3D elasticity analysis by Liew and Yang [11]. These are presented in
Table 1. The boundary conditions are: F–F: free both in the inner and outer radius, F–S: free on the inner
radius and simply supported on the outer, and F–C: free on the inner radius and clamped on the outer radius.
The results are given in terms of the nondimensional frequency parameter l ¼ oR2

out

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� m2Þr=E

p
=ð2phÞ.

The results are exactly the same as in Ref. [9], and lower than the results of Ref. [11]; the reason the current
solution is softer than the 3D solution is that the warping of the cross section is relaxed in the current
kinematics relationships.

In Table 2 a comparison is shown between the transverse natural frequencies for a linearly tapered clamped-
free disc made of steel that were obtained by the present analysis (type (a) in Fig. 2), and the experimental and
theoretical results that were presented by Shahab [19]. The geometrical parameters are Rin/Rout ¼ 0.1,
Table 8

Natural frequencies O ¼ oRout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rst=Est

p
of free–free FGM (Si3N4-SUS304) annular disc with variable thickness (g ¼ 5, Rin/Rout ¼ 0.2,

H/Rout ¼ 0.1)

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

Linear thickness variation (a-type)

1 L 0.3110 0.6744 0.1839 0.4092 0.6795 0.9987

2 L 1.3625 1.7536 1.1175 1.6375 2.1925 2.7735

3 E 2.2027 1.9506 1.3691 2.5479 3.3737 4.0870

4 L 3.0777 3.3452 2.4801 3.2277 3.9837 4.7336

5 T 3.5300 4.5088 2.8219 3.9947 5.1536 6.2530

6 L 5.2559 4.8558 4.0896 5.0128 5.9312 6.8132

7 E 5.5405 5.4432 4.6642 5.5268 6.8600 8.0137

8 T 6.0211 7.1878 6.0000 6.8924 7.9185 8.9216

9 L 7.7129 7.8418 6.0685 7.4079 8.5549 9.7612

10 T 8.5726 8.5211 7.7619 8.1945 9.2233 10.6105

Parabolic thickness variation (convex f-type)

1 L 0.3329 0.7264 0.1979 0.4435 0.7339 1.0718

2 L 1.4804 1.8688 1.2068 1.7573 2.3436 2.9545

3 E 2.1962 1.9649 1.3612 2.5528 3.3978 4.1250

4 L 3.2824 3.5437 2.6267 3.4114 4.1995 4.9790

5 T 3.5762 4.5654 2.8398 4.0087 5.1678 6.2682

6 L 5.5084 4.8964 4.2828 5.2291 6.1787 7.0879

7 E 5.6247 5.7093 4.7319 5.5700 6.8705 8.0113

8 T 6.0569 7.2188 6.0919 7.1373 8.1773 9.2045

9 L 8.0245 8.1510 6.2549 7.4370 8.5852 9.7796

10 T 8.5988 8.5552 7.7900 8.2214 9.2475 10.6272

Parabolic thickness variation (concave c-type)

1 L 0.3001 0.6477 0.1770 0.3923 0.6526 0.9625

2 L 1.3036 1.6953 1.0722 1.5767 2.1152 2.6802

3 E 2.2060 1.9429 1.3733 2.5444 3.3596 4.0654

4 L 2.9722 3.2431 2.4039 3.1319 3.8705 4.6040

5 T 3.5046 4.4758 2.8122 3.9874 5.1463 6.2450

6 L 5.1161 4.8361 3.9891 4.8980 5.7991 6.6659

7 E 5.5020 5.3033 4.6274 5.5034 6.8548 8.0160

8 T 6.0027 7.1714 5.8670 6.7622 7.7788 8.7678

9 L 7.5461 7.6763 6.0552 7.3927 8.5391 9.7518

10 T 8.5594 8.5042 7.7474 8.1813 9.2112 10.6018

E—Extensional mode of vibration with dominant radial oscillations.

L—Vibration mode with dominant lateral oscillations.

T—Torsional mode of vibration.
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hin/hout ¼ 3, Rout ¼ 3.5 in (0.089m), hin ¼ 3/16 in (0.00476m), and the material properties are r ¼ 0.285 lb/in3

(7888 kg/m3), E ¼ 30� 106 lbf/in2 (2.06913� 1011N/m2), and m ¼ 0.3. In Ref. [19] the Ritz five-term approach
and a thick 3D cylindrical finite element with 96 degrees of freedom, were used for the calculations of the
frequencies of tapered disc. For low number of circumferential waves the present results are closer to the
experimental results, and in general are higher, whereas the 3D FEM solution gives in some cases values that
are lower than the experimental frequencies. The experimental results of Shahab [19] are compared with the
current solution, together with the mode shapes in Fig. 3. The frequency values are very close to the
experimental values, and the modes are identical.

Another comparison for linear and nonlinear variation of isotropic plates clamped at the inner edge and free
at the outer edge was presented by Duan et al. [27]. In Table 3 results are given for linearly increasing thickness
  

 

 

 

Fig. 4. Mode shapes of vibrations of completely free FGM annular plate with parabolic concave variable thickness (g ¼ 5, n ¼ 0, 1). For

each mode, the upper plot shows displacement amplitudes u (dashed line), v (chain-dotted line), w (solid line), the lower plot shows

displacement amplitudes cy (dashed line), and cs (solid line).
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Fig. 4. (Continued)
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annular plate (h(s) ¼ s/15, type (b) in Fig. 2). The FE model was constructed using 1242 3D elements. In
Table 4 plates with nonlinear increasing variation of thickness (h(s) ¼ s0.5/15, type (e) in Fig. 2) are compared
with 3195 3D elements FE model. The present results are very close to both the numerical FEM values and the
results that were obtained by the generalized hypergeometric functions method.

Table 5 presents the nondimensional frequencies of completely free annular plates with radius ratio
Rin/Rout ¼ 1/6, m ¼ 0.3 and different types of thickness variation that are expressed as follows:

hðxÞ ¼ hin 1þ xp hout=hin � 1
� �� �

, (20)

where p represents the characteristics of the variation: p ¼ 1 for linear variation, and p ¼ 2 for parabolic
variation. The results are compared with those given by Kang [22] that obtained by 3D Ritz analysis.
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The results are presented with indication of the vibrational mode type as follows: for axisymmetric vibrations,
n ¼ 0, the letter L stands for lateral vibration modes, R for radial modes, T for torsional modes, and Tr for
torsional modes about the radius, which represent opposite in-plane motion of the upper part of the plate,
relative to the motion of the bottom part. For higher wave numbers (n40), the modes are coupled, and are
identified as out-of-plane modes (OP), and in-plane modes (IP). It can be seen that for most of the lateral and
OP the results that are obtained using the current method yield lower upper bound values for the frequency
than the reference values from Ref. [22]. For in-plane motions the present results are slightly higher than those
from Ref. [22].
Fig. 5. Mode shapes of vibrations of completely free FGM annular plate with parabolic concave variable thickness (g ¼ 5, n ¼ 2, 3). For

each mode, the upper plot shows displacement amplitudes u (dashed line), v (chain-dotted line), w (solid line), the lower plot shows

displacement amplitudes cy (dashed line), and cs (solid line).
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Results for FGM plates are given here for the first time. The material properties are given in Table 6 and the
results for two gradient indexes are given in Table 7 (g ¼ 1), and Table 8 (g ¼ 5). A completely free silicone-
nitride-stainless steel annular disc with variable thickness was analyzed. The upper surface is made from
silicone-nitride. The radius ratio is Rin/Rout ¼ 0.2, and thickness to radius ratio H/Rout ¼ 0.1. Three types of
thickness variations were examined:
(a)
 h(x) ¼ H(1.2�0.4x) or h x
� �
¼ H 0:8þ 0:4x

� �
for linear variation (type (a) in Fig. 2);� �
(b)
 h(x) ¼ H(1.2�0.4x2) or h x
� �
¼ H 0:8þ 0:8x� 0:4x

2
for convex variation (type (f) in Fig. 2);� �
(c)
 h(x) ¼ H(1.2�0.6x+0.2x2) or h x
� �
¼ H 0:8þ 0:4x

2
for concave variation (type (c) in Fig. 2).
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Results for the first 10 natural dimensionless frequencies O ¼ oRout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rst=Est

p
are given in the tables for six

circumferential wave numbers (n ¼ 0, 1,y, 5). Figs. 4 and 5 present the mode shape functions and contour
plots for the first eight frequencies in each sequence, for circumferential wave numbers n ¼ 0, 1, 2, 3. The
present data of the free vibration of FGM annular thick plates may be regarded as benchmark results for
comparison with other methods.
5. Conclusions

The exact free vibration frequencies and modes of variable thickness thick annular plates, made of isotropic
and functionally graded materials (FGM) are found. The resulting system of equations of motion is a coupled
set of partial differential equations with variable coefficients, and the exact solution is obtained using the exact
element method and the dynamic stiffness method. Results for variable thickness thick FGM plates are given
for the first time, and it is hoped that these can serve as reference values for other computational methods.
References

[1] A.W. Leissa, Vibrations of Plates, NASA SP-160, USA, 1969.

[2] A.W. Leissa, Recent research in plate vibrations: classical theory, The Shock and Vibration Digest 9 (1977) 13–24.

[3] A.W. Leissa, Recent research in plate vibrations, 1973–1976: complicating effects, The Shock and Vibration Digest 10 (1978) 21–35.

[4] A.W. Leissa, Plate vibration research, 1976–1980: classical theory, The Shock and Vibration Digest 13 (1981) 11–22.

[5] A.W. Leissa, Plate vibration research, 1976–1980: complicating effects, The Shock and Vibration Digest 13 (1981) 19–36.

[6] A.W. Leissa, Recent studies in plate vibrations: 1981–1985, Part I: classical theory, The Shock and Vibration Digest 19 (1987) 11–18.

[7] A.W. Leissa, Recent studies in plate vibrations: 1981–1985, Part II: complicating effects, The Shock and Vibration Digest 19 (1987)

10–24.

[8] G.N. Weisensel, Natural frequency information for circular and annular plates, Journal of Sound and Vibration 133 (1989) 129–134.

[9] T. Irie, G. Yamada, K. Takagi, Natural frequencies of thick annular plates, Journal of Applied Mechanics 49 (1982) 633–638.

[10] J. So, A.W. Leissa, Three-dimensional vibrations of thick circular and annular plates, Journal of Sound and Vibration 209 (1998)

15–41.

[11] K.M. Liew, B. Yang, Elasticity solutions for free vibrations of annular plates from three-dimensional analysis, International Journal

of Solids and Structures 37 (2000) 7689–7702.

[12] C.F. Liu, Y.T. Lee, Finite element analysis of three-dimensional vibrations of thick circular and annular plates, Journal of Sound and

Vibration 233 (2000) 63–80.

[13] D. Zhou, F.T.K. Au, Y.K. Cheung, S.H. Lo, Three-dimensional vibration analysis of circular and annular plates via the

Chebyshev–Ritz method, International Journal of Solids and Structures 40 (2003) 3089–3105.

[14] W.H. Duan, S.T. Quek, Q. Wang, Free vibration analysis of piezoelectric coupled thin and thick annular plate, Journal of Sound and

Vibration 281 (2005) 119–139.

[15] P.A.A. Laura, V. Sonzogni, E. Romanelli, Effect of Poisson’s ratio on the fundamental frequency of transverse vibration and

buckling load of circular plates with variable profile, Applied Acoustics 47 (1996) 263–273.

[16] B. Singh, V. Saxena, Axisymmetric vibration of a circular plate with double linear variable thickness, Journal of Sound and Vibration

179 (1995) 879–897.

[17] B. Singh, V. Saxena, Axisymmetric vibration of a circular plate with exponential thickness variation, Journal of Sound and Vibration

192 (1996) 35–42.

[18] B. Singh, V. Saxena, Transverse vibration of a circular plate with unidirectional quadratic thickness variation, International Journal of

Mechanical Sciences 38 (1996) 423–430.

[19] A. Shahab, Finite element analysis for the vibration of variable thickness discs, Journal of Sound and Vibration 162 (1993) 67–88.

[20] A. Salmane, A.A. Lakis, Natural frequencies of transverse vibrations of non-uniform circular and annular plates, Journal of Sound

and Vibration 220 (1999) 225–249.

[21] J.H. Kang, A.W. Leissa, Three-dimensional vibrations of thick, linearly tapered, annular plates, Journal of Sound and Vibration 217

(1998) 927–944.

[22] J.H. Kang, Three-dimensional vibration analysis of thick, circular and annular plates with nonlinear thickness variation, Computers

and Structures 81 (2003) 1663–1675.

[23] M. Eisenberger, M. Jabareen, Axisymmetric vibrations of circular and annular plates with variable thickness, International Journal of

Structural Stability and Dynamics 2 (2001) 195–206.

[24] X. Wang, J. Yang, J. Xiao, On free vibration analysis of circular annular plates with non-uniform thickness by the differential

quadrature method, Journal of Sound and Vibration 184 (1995) 547–551.

[25] P.A.A. Laura, D.R. Avalos, H.A. Larrondo, V. Sonzogni, Comments on free vibration analysis of circular and annular plates with

non-uniform thickness by the differential quadrature method, Journal of Sound and Vibration 195 (1996) 338–339.



ARTICLE IN PRESS
E. Efraim, M. Eisenberger / Journal of Sound and Vibration 299 (2007) 720–738738
[26] T.U. Wu, G.R. Liu, Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule,

International Journal of Solids and Structures 38 (2001) 7967–7980.

[27] W.H. Duan, S.T. Quek, Q. Wang, Generalized hypergeometric function solutions for transverse vibration of a class of non-uniform

annular plates, Journal of Sound and Vibration 287 (2005) 785–807.

[28] M. Koizumi, FGM activities in Japan, Composites Part B 28B (1997) 1–4.

[29] J.N. Reddy, C.M. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, European

Journal of Mechanics A/Solids 18 (1999) 185–199.

[30] M. Eisenberger, An exact element method, International Journal for Numerical Methods in Engineering 30 (1990) 363–370.

[31] A.W. Leissa, Vibration of shells, NASA SP-288, USA, 1973 (reprinted by The Acoustical Society of America, 1993).


	Exact vibration analysis of variable thickness thick annular isotropic and FGM plates
	Introduction
	Basic equations
	Solution
	Examples
	Conclusions
	References


